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INTRODUCTION  

It is well known that volatility in equity markets 

is asymmetric, i.e. negative returns are 

associated with higher volatility than positive 

returns, but whether other asset markets, such as 
currency futures, exhibit volatility asymmetry is 

less well-known. Bollerslev at al. (1992) suggest 

that "The two-sided nature of the foreign 
exchange market makes such asymmetries less 

likely". Since then the theoretical advances in 

volatility models has led to a large literature on 

exchange rate volatility, almost exclusively 
concentrated on rates versus the US Dollar. 

However, the issue of volatility asymmetry has 

remained under-examined, as noted by Wang 
and Yang (2009). 

The so-called "two-sided" nature of the foreign 

exchange market is the primary reason that 
symmetric models are chosen for modeling 

exchange rates and currency derivatives. The 

reasoning is that relative positive news for one 

currency must of necessity imply relative 
negative news for the other currency. This 

implies that currency rate volatility should have 

symmetric responses to shocks in the return on 
the underlying rate. Further, standard 

asymmetric GARCH models regularly fail to 

detect asymmetry in daily exchange rate 
volatility. 

There are at least two reasons to suspect the 

presence of asymmetry in exchange rates. First, 

some currencies have greater economic 

importance than others. Many banks use the US 

dollar as their base currency for profit and loss 
calculation. Therefore, a higher than expected 

volatility in a dollar based exchange rate may 

imply greater risk in assets denominated in 

another currency, but not necessarily greater risk 
for dollar denominated assets. This can lead to 

sales of assets denominated in another currency, 

and a lower US dollar direct exchange rate. 
Though, with currencies of relatively similar 

importance, say the Japanese Yen/Euro cross 

rate, we should expect this effect to be weaker. 
Second, central bank intervention could lead to 

periods of volatility asymmetry. Higher 

volatilities could be a result of a central bank 

reacting to an undesired appreciation or 
depreciation of its currency. For Japanese Yen 

(JPY) cross-rate futures in the current case, this 

would be of particular emphasis since the Bank 
of Japan is well-known to have been a heavy 

seller of the JPY over much of my sample 

period. 

McKenzie (2002) finds some support for the 

hypothesis that central bank intervention s cause 

asymmetric volatility in exchange rates using 

USD/AUD rates on a daily basis. Several 
authors have documented asymmetric volatility 

in exchange rates while studying other issues. 

Byers and Peel (1995) find volatility asymmetry 
in European exchange rates from 1922-

1925.Andersen et al. (2003b) measure 

asymmetric responses in volatility for major 

exchange rates to US economic announcements. 
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Asymmetric volatility has also been documented 

in minor currencies, including the Malaysian 
ringgit (Tse and Tsui, 1997), Australian dollar 

(McKenzie, 2002) and the Mexican peso (Adler 

and Qi, 2003). Wang and Yang (2009) examine 
four major currencies (the Australian dollar, 

Euro, British pound and the Japanese yen) 

versus the dollar and find strong evidence for 

volatility asymmetry 

This study tests for the presence of asymmetric 

volatility in Euro denominated cross-rate 

futures. The issue is important for several 
reasons. First, the currency futures markets 

present a substantial risk to investors as well as 

an opportunity to hedge for users and suppliers 
of currencies. As argued by Engle (2004), the 

presence of asymmetric volatility, if 

unaccounted for, will lead to the 

underestimation of the Value at Risk. Second, 
an empirical examination of asymmetric 

volatility will enhance our understanding of 

currency futures dynamics, particularly in the 
second moment and particularly for non-dollar 

denominated contracts. This in turn may 

improve volatility forecasting and derivative 

pricing. Third, the presence of asymmetric 
volatility invalidates the standard normality 

results associated with a continuous diffusion 

price process (Andersen, Bollerslev, and 
Dobrev, 2005, Barndorff-Nielsen and Shephard, 

2006). These results are used in testing for 

jumps in volatility, e.g. Huang and Tauchen 
(2005). Last, but not least, the presence of 

asymmetric volatility will challenge the 

traditional economic explanations for 

asymmetric volatility and call for alternative 
explanations. 

This study makes several contributions to the 

literature on currency futures volatility. First, I 
test for the presence of asymmetric volatility in 

realized volatility of currency futures returns. 

Realized volatility is an unbiased and highly 
efficient estimator of the underlying integrated 

return volatility. It should capture any 

asymmetric relationship between return and 

integrated volatility that may have been missed 
in less-efficient volatility measures.  

This leads to my second contribution. I draw 

direct comparison between realized volatility 
and daily GARCH estimated volatility in terms 

of statistical properties and short-term 

dynamics. Despite a rapid expansion of studies 

on realized volatility, “the relationship between 
these models and the standard daily ARCH-type 

modeling paradigm is not yet fully understood, 

neither theoretically nor empirically.” 

(Andersen, Bollerslev, and Dobrev, 2005).  

Third, my test for asymmetric volatility is based 

on a dynamic model of realized volatility that 

encompasses the impact of the long-run 
volatility as well as the long-run price trend. The 

long memory in volatility has been documented 

by many studies since Ding, et al. (1993). The 

association between price trend and volatility 
has been explored by Müller, et al. (1997), 

Campa, et al. (1998), and Johnson (2002) 

among others. I separately identify the impact of 
long-term price trend from the asymmetric 

impact of return innovations.  

Fourth, using the nonparametric procedure 
proposed by Barndorff-Nielsen and Shephard 

(2006), I decompose realized volatility into a 

continuous component and a jump component. 

Understanding the jump component is important 
for a range of investment decisions, from asset 

allocation (Liu, Longstaff, Pan, 2003) to option 

pricing (Eraker, et al., 2003). I examine which 
component is associated with volatility 

asymmetry. 

Fifth, by studying non-dollar denominated 

currency futures, we can investigate the 
presence of asymmetric volatility in less well-

traded contracts, in terms of volume. 

DATA AND PRELIMINARY ANALYSIS 

The analysis is based on intraday quotes for 

Swiss franc (CHF/EUR), British pound 

(EUR/GBP) and Japanese yen (EUR/JPY) 
cross-rate futures versus the euro, over a period 

of more than 5 years from April 14, 2004 to 

October 22, 2009. The quotes are from the 
Chicago Mercantile Exchange.  

Construction of Daily Return and Realized 

Volatility 

The quotes are used for the construction of daily 

return and realized volatility. I adopt the same 

30-minute sampling interval as Andersen et al 

(2003)  argue that “the use of equally-spaced 
thirty-minute returns strikes a satisfactory 

balance between the accuracy of the continuous-

record asymptotics underlying the construction 
of our realized volatility measures on the one 

hand, and the confounding influences from 

microstructure frictions on the other.” I first 
calculate the midpoint of the bid and ask quotes 

at each 30-minute interval as the linear 

interpolation of the quotes immediately before 

and after the 30-minute time stamp. Following 
the convention in Bollerslev and Domowitz 
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(1993) and Andersen et al (2003), a trading day 

starts at 2100 GMT, or 4pm New York time, 
and ends at 2100 GMT on the next day. 

Weekend quotes, from 2100 GMT on Friday to 

2100 GMT on Sunday, are excluded. Half-
hourly returns are the log-difference of half- 

Q(20)  and Q
2
(20) are Ljung-Box statistics for 

testing autocorrelation in return and squared 

return respectively for the first 20 lags. The 5% 

critical value of 
2
(20) distribution is 31.41. 

Table1. Daily Return Summary 

 CHF/EUR EUR/GBP EUR/JPY 

Observations 1549 1549 1549 

Median   0.000003 0.000000 0.000367 

Mean 0.000008 0.000129 0.000047 

S.D. 0.000022 0.004267 0.007251 

Skewness 14.313942 0.149512 -0.198664 

Kurtosis 317.467914 9.674794 12.272236 

Q(20) 3470.1922 67.1158 61.2289 

Q2(20) 1797.1246 1196.6791 1936.3747 

Table2. Daily Realized Volatility Summary 

Realized volatility CHF/EUR EUR/GBP EUR/JPY 

 Median   0.000003   0.000008 0.000013 

 Mean   0.000008 0.000019 0.000042 

 S.D. 0.000022 0.000098 0.000181 

 Skewness 14.313942 21.825368 16.150266 

 Kurtosis 317.467914 547.075027 325.955636 

 Q(20) 3470.1922 314.8694 1044.7889 

Log realized volatility    

 Median   -12.625061 -11.762089 -11.222382 

 Mean -12.570978   -11.809692 -11.228104 

 S.D. 1.224222 1.246816 1.390930 

 Skewness -0.074213   -0.373526 -0.238106 

 Kurtosis 1.739039 2.625211 2.703263 

 Q(20) 4139.3664 3310.6771 4359.2251 

EGARCH cond. variance    

 Median 0.000000 0.000000 0.000000 

 Mean   0.000009 0.000017 0.000050 

 S.D. 0.000013 0.000018 0.000075 

 Skewness 3.886028 4.156875 4.611883 

 Kurtosis 16.723525 20.290054 24.433633 

 Q(20) 25311.6303 28273.2288 22988.6150 

    

Q(20)  and Q
2
(20) are Ljung-Box statistics for 

testing autocorrelation in returns for the first 20 

lags. The 5% critical value of 
2
(20) distribution 

is 31.41. EGARCH conditional variance series 

are based on the point estimates reported in 

Table 3. 

Hourly prices. Daily returns are the sum of half-

hourly returns over the trading day. Daily 

realized volatility is the sum of squared half-

hourly returns over a trading day. Sometimes a 

trading day has less than 48 half-hourly 

observations due to holiday in part of the world, 

slow trading, or a recording system stoppage. If 

a trading day has more than 3.5 hours of missing 

data, I exclude the day from our sample. This 

process leads to 1549 daily observations. 

Data summary 

Table 1 exhibits summary statistics for daily 

returns based on the quotes. For all contracts, 

the means and the medians are several orders 

smaller than the standard deviation of the 

measured returns. The standard deviations of the 

two contracts are very close to each other. Both 

returns series display departures from normality, 

exhibiting positively skewed and lepto-kurtopic 

distributions. The Ljung-Box statistics indicate 

significant autocorrelation in the return series 

and in the squared return series for both 

contracts. 

Table 2 reports the summary statistics for the 

daily realized volatility series of both contracts. 

The mean and standard deviations of the 

realized volatility for both contracts are very 

similar, as are the skewness statistics. The 

Ljung-Box statistics indicate significant 

autocorrelations in all series, but it is less 

pronounced in the realized volatility series that 

has been constructed. The realized volatility 

series are clearly non-normal in terms of their 

underlying distribution. 

The middle panel of Table 2 summarizes the log 

realized volatility on a daily basis, which is the 

primary variable used in our study. The 

skewness and kurtosis are much smaller than for 

the realized volatility. The log realized volatility 

has higher Ljung-Box statistics than the realized 
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volatility, a characteristic consistent with 

previous studies using realized volatility 

(Anderson et al (2001,2003) and Wang and 

Yang (2009)). 

The bottom panel reports the basic statistics for 

the estimated conditional variance of an 

EGARCH model, whose estimation details are 

provided below. Compared to the realized 

variance, the EGARCH variance has a higher 

mean and median and exhibit much less 

skewness and kurtosis. On the other hand, the 

EGARCH estimated variances also show a 

much larger degree of autocorrelation as shown 

by the Ljung-Box statistics. 

Table3. GARCH Models 

EGARCH CHF/EUR EUR/GBP EUR/JPY 

 -0.00004(0.00005) -0.00003(0.00008) 0.0003***(0.0001) 

δ -0.1394***(0.0420) -0.0755*(0.0403) -0.2729***(0.0595) 

α 0.1012***(0.0199) 0.0772***(0.0184) 0.1201***(0.0268) 

β 0.9948***(0.0029) 0.9983***(0.0031) 0.9827***(0.0048) 

γ 0.0589***(0.0132) 0.0229*(0.0133) -0.1024***(0.0179) 

v 6.5509***(1.0110) 5.7185***(0.8741) 6.0254***(0.8817) 

GJR    

 -0.00004( 0.00005) -0.00002(0.00007) 0.0003**(0.0001) 

δ 0.0000001***(0.00000001) 0.00000005 (0.00000005) 0.0000007***(0.0000002) 

α 0.0871***(0.0035) 0.0443***(0.0122) 0.0008(0.0183) 

β 0.9273***(0.0030) 0.9682***(0.0103) 0.9118***(0.0169) 

γ -0.0491***(0.0069) -0.0275*(0.0155) 0.1256***(0.0283) 

v 6.4608***(0.8623) 5.7817***(0.9588) 6.4255***(1.0627) 

    

ASYMMETRIC GARCH MODELS FOR DAILY 

RETURNS 

Previous studies using GARCH type models 

have reported mixed results in volatility 

asymmetry in the oil futures markets. I revisit 

this issue by estimating GARCH models that 
allow for asymmetry in the return series. I then 

draw comparisons between the realized 

volatility and the GARCH-estimated daily 
volatility in terms of statistical properties and 

short-term dynamics; I use two asymmetric 

GACRH models. The first is the exponential 
GARCH, EGARCH hereafter, model of Nelson 

(1991) and the second is the Glosten, 

Jaganathan and Runkle model, hereafter GJR. 

Given that there is autocorrelation in the return 
series, the mean specification is: 

 rt = μ + δrt−1εt~iid t(v)          (1)                                                                                  

where ht is the conditional variance of the daily 
return series rt and t(v) is Student's t-distribution  

with degree of freedom v. The t-distribution is 

suitable for capturing the lepto-kurtosis of the 

underlying distribution in the return series. 

The EGARCH specification is 

ln ht = ω + α 
 εt−1 

 ht−1
 + γ  

εt−1

 ht−1
 + β ln ht−1    (2) 

and the GJR specification is 

ln ht = ω + αεt−1
2 + γSt−1εt−1

2 + βht−1         (3) 

Where, St =1 if rt<0; St =0 otherwise. Engle and 

Ng (1993) show that EGARCH and GJR are 

superior to other asymmetric volatility models. 

For both models, the γ term captures the 

asymmetric effects. 

The results of the GARCH estimations are 
reported in Table 3. The results are consistent 

with the stylized characteristics of daily 

GARCH models. The coefficients α and β are 
significant and β is close to one for all 

contracts.. The asymmetry effect, γ, is 

significant for all contracts under all models, but 
there is a sign change depending on the model. 

The EGARCH model exhibits a negative 

asymmetry coefficient, while the coefficient 

estimated for the GJR model is positive. 

However, the asymmetric effects found here are 

very transitory. All of the estimated coefficients 

are very small. 

Figure 1 provides a visual comparison of 

realized volatility and EGARCH volatility for 

the EUR/JPY futures. EGARCH volatility is 

often viewed as predicted volatility based solely 
on past returns whereas realized volatility may 

be viewed as an observation on the current 

volatility. Figure 1 makes plain that EGARCH 
volatility captures the low frequency component 

of volatility adequately, but represents the high 

frequency component poorly. On the other hand, 
realized volatility, which converges in 

probability to the underlying volatility when the 

sampling frequency increases, carries much 

more information about the underlying volatility 
than the EGARCH return. 
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GARCH family models with rt = μ +
δrt−1εt ~iid t(v) 

EGARCH 

 ln ht = ω + α  
 εt−1 

 ht−1
 + γ  

εt−1

 ht−1
 + β ln ht−1  

GJR ln ht = ω + αεt−1
2 + γSt−1εt−1

2 + βht−1  

The asterisks *, ** and *** represent statistical 

significance at 10%, 5% and 1% respectively. 
Standard errors are in parentheses. Coefficients 

measuring asymmetry results are in bold. 

TESTING FOR ASYMMETRY IN REALIZED 

VOLATILITY 

As I argued in the previous section, daily 
realized volatility is a better means of examining 

the structure of daily volatility and its 

relationship with lagged returns. In the 

following section, I model the daily realized 
volatility and test for volatility asymmetry. 

Long-memory and HAR-RV model 

As shown by the Ljung-Box statistics, the 
autocorrelations in daily realized volatility 

decays very slowly. This long-memory 

dependence is a common characteristic of daily 
realized volatility, To account for this, Andersen 

et al (2003a) model realized volatilities as a 

fractionally integrated process. Recently, Corsi 

(2004) and Andersen et al (2005) adapt a 
heterogeneous ARCH model (HARCH), based 

on their heterogeneous market hypothesis to 

capture this long-memory dependency. An 
adaption of this model, the heterogeneous 

autoregressive realized volatility model, (HAR-

RV) is found by Corsi and Andersen et al to 

provide superior forecasting performance. I use 
a variant of this model to describe the realized 

volatility series similar to that employed by 

Wang and Yang (2009). 

The Modified HAR-RV Model 

The basic HAR-RV model includes past 
volatilities aggregated over different time 

horizons as explanatory variables. Let rv
D

t  be 

the realized volatility on day t. The average 
realized volatility in the past h days (including 

day t) is rvt,h = 1/h Σ
t
s=t-h+1 rv

D
s. I denote the 

average weekly (h=5), monthly (h=22), and 

quarterly (h=66) volatilities as rv
W

t, , rv
M

t , and 
rv

Q
t  respectively. The HAR-RV model of Corsi 

(2004) is given by 

𝑟𝑣𝑡
𝐷 = 𝜔 +  𝛽𝑘𝑄

𝑘=𝐷 𝑟𝑣𝑡−1
𝑘 + 𝜉𝑡                         (4)  

To test for any asymmetric impact from returns 
to volatility, I modify the basic HAR-RV model 

by including the lagged daily return as an 

explanatory variable: 

𝑙𝑛⁡(𝑟𝑣𝑡
𝐷) = 𝜔 +  𝛽𝑘𝑄

𝑘=𝐷 𝑙𝑛 𝑟𝑣𝑡−1
𝑘  +  𝛼𝐷 𝑟𝑡−1

𝐷  +

𝛾𝐷𝑟𝑡−1
𝐷 + 𝜉𝑡                         (5) 

The use of the logarithmic volatility is 
motivated by its approximately normal 

distribution, as documented in Table 3 and by 

ABDL (2001, 2003). When negative returns 
lead to greater volatility than positive returns, as 

in equity markets, I expected the coefficient of 

the lagged return, γ, to be negative and 

significant. In addition, I include past absolute 
returns at daily, weekly, monthly, and quarterly 

intervals. Theory (e.g. Forsberg and Ghysels, 

2004) and empirical evidence (e.g. Ghysels, et 
al., 2006) suggest that absolute returns 

outperform square return-based volatility 

measures in predicting future increments in 

quadratic variation. Long-run absolute returns 
also captures price trends that increase 

volatility; see Campa, et al. (1998) and Johnson 

(2002) 

 

Figure1
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Table4. HAR-logRV-R models 

 CHF/EUR EUR/GBP EUR/JPY 

ω -2.6234***(0.5806) -3.8164***(0.5931) -3.1767***(0.5035) 

βD 0.0613**(0.0270) 0.0085(0.0250) 0.0798***(0.0271) 

βW 0.4602***(0.0663) 0.3984***(0.0813) 0.4627***(0.0859) 

βM 0.0505(0.0953) 0.1344(0.1017) 0.0939(0.1037) 

βQ 0.2467***(0.0864) 0.1707***(0.0615) 0.1185*(0.0609) 

αD 55.8026***(14.7623) 55.2186***(9.7354) 32.5738***(6.6223) 

γD 21.7490**(9.1377) 15.5440**(6.3078) -12.5575***(3.8898) 

corr(rt,ξt) 0.1333 0.0993 0.3241 

adj. R2 0.3433 0.2582 0.3273 

Q(20) 0.5139 0.5642 0.5289 

    

Table 4 reports the estimation results of model 

(5), where the standard errors are computed 
using the Newey-West correction for 

heteroscedasticity and autocorrelation (HAC) to 

obtain robust estimates. The null hypothesis of 
no asymmetry, γ=0, can be rejected for all 

futures contracts. As shown by Wang and Yang, 

the relative asymmetric effect of r
D

t-1 on rv
D

t  
can be measured as exp(-2γ

D
ζ)-1, where ζ is the 

standard deviation of the daily return. Based on 

the sample standard deviation of the returns in 

Table 1 and the point estimate in Table 4, the 
value of this measure would be -0.10%, -

12.42% and 5.81% for the CHF/EUR, 

EUR/GBP and EUR/JPY future respectively. 
Thus asymmetric returns are of little economic 

significance for the CHF/EUR futures and of 

some significance for the remaining futures 
contracts. 

SENSITIVITY ANALYSIS 

In this section I examine an alternative 
specification of the HAR-logRV model and the 

removal of the jump component from realized 

volatility. This will serve as a robustness check 

on the findings in the previous section. 

Modified HAR-logRV-R models 

Forsberg and Ghysels (2004) and Ghysels et al 

(2006) both suggest that absolute returns have 
predictive power for realized volatility. One way 

to view this is that long-term absolute returns 

may be viewed as price trends, or momentum, 
that increases volatility. Thus, lagged weekly, 

monthly and quarterly absolute returns are 

relevant explanatory variables in 

explainingdaily log realized volatility. I check 
the sensitivity of the asymmetric effects to the   

ln⁡(rvt
D) = ω +  β

k

Q

k=D

ln rvt−1
k  +  αD rt−1

D  

+ γDrt−1
D + ξ

t
 

The asterisks *, ** and *** represent statistical 

significance at 10%, 5% and 1% respectively. 

Q(20) are Ljung-Box statistics for testing 

autocorrelation in returns for the first 20 lags. 

The 5% critical value of 2(20) distribution is 
31.41.The standard errors are the Newey-West 

HAC robust estimates and are in parentheses. 

Inclusion of long-term absolute returns in the 

HAR-logRV model by estimating the following 

version: 

rvt
D = ω +  βkQ

k=D ln rvt−1
k  + αk  rt−1

k  +

γk rt−1
k + ξt .                          (6) 

where rkt = (1/h)Σts=t-h-1rDs and h=1 for k=D, 

5 for k =W, 22 for k=M and 66 for k=Q. The 
hypothesis of symmetric volatility is again that 

γ=0. The estimation results for model (6) are 

presented in Table 5. The hypothesis of 
symmetric volatility is rejected for all of the 

contracts except for the CHF/EUR contract. 

As a further test of robustness, I now examine 

the model when lagged weekly, monthly and 

quarterly returns are included: 

rvt
D = ω +  βkQ

k=D ln rvt−1
k  + αk  rt−1

k  +

γk rt−1
k + ξt.                        (7) 

The estimation results of model (7) are reported 

in Table 6. I test the joint null hypothesis Ho: 
γD= γW= γM= γQ=0. The joint null is rejected 

for all contracts again except for the CHF/EUR 

contract. 

5.2 Continuous and jump components of 

realized volatility 

Recently, Barndorff-Nielsen and Shepard 

(2004,2006) have proposed a procedure that 
allows for a direct non-parametric 

decomposition of realized volatility into a 

continuous component and a jump component. 
If jumps are viewed as infrequently observed 

large-magnitude intraday returns, it is of interest 

to determine the effects of these jumps on 

asymmetric volatility, especially, if these jumps 
may be causing us to detect asymmetry. That, I 

check to see if the asymmetric effects in Table 4 
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are sensitive to the removal of the jump 

component from the realized volatility. 

Barndorff-Nielsen and Shepard (2004) show 

that as the intra-day sampling length shrink to 

zero the realized volatility rvDt converges in 

probability to the sum of a component 

associated with a continuous diffusion process 

and a component associated with a jump 

process. The bi-power variation, bvDt = 

(π/2)Σmj=2 |rt,j||rt,j-1| where m is the number of 

intraday sampling intervals and rt,j is the 

intraday return for interval j. The bi-power 

variation is shown to converge in probability to 

the integrated volatility component, or the 

component associated with the continuous 

diffusion process. 

To test for the presence of a jump component in 

the daily realized volatility, Barndorff-Nielsen 

and Shepherd (2006) suggest the following test 

statistic: 

Zt =

m 1/2

 

 
 bv t

D

rv t
D−1

 

 

 
 

 π
2

4 +π−5 .max  1,
 qv t

D  
1/2

bv t
D  

       (8) 

where qvDt = (π2/4)mΣmj=42 |rt,j||rt,j-1| |rt,j-

2||rt,j-3| (a quad-power variation). The Z statistic 

converges in probability to a standard normal 

random veritable when the lengths of the 

sampling intervals shrink to zero and there are 

no jumps. Therefore, the null of no jump is 

rejected if Zt is too negative.. Following 

Andersen et al (2005), I let zα be the standard 

normal upper tail critical interval for a given 

significance level α, z0.001=3.09. As suggested 

by Andersen et al (2005), the jump and 

continuous components of daily realized 

volatility are then constructed by 

Jt
D = I Zt < za  rvt

D − bvt
D    

and Ct
D = rvt

D − Jt
D           (9) 

respectively, where I{A} is an indicator 

function that is 1 if A is true and zero otherwise. 

I construct the continuous and jump components 

as described above choosing the significance 

level of α = 0.001. Some descriptive statistics of 
JDt are given in Table 7. To test whether the 

HAR-logRV model (5) results are driven by 

infrequent jumps, I replace the rvDt  in model 

(5) with the continuous component CDt. I report 
these results in Table 8. 

Since the results in Table 8 are qualitatively the 

same as the results in Table 4, I conclude that 

the asymmetric effects noted in Table 4 are not 

caused by infrequent jumps in the returns series.  

CONCLUSIONS 

I present in this paper new evidence for the 
presence of asymmetric volatility in Euro cross-

rate futures contracts. The results are robust to a 

number of model variations and data series. The 

CHF/EUR futures are found to have no 
significant volatility asymmetry, while the 

remaining contracts exhibit small, but 

significant, volatility asymmetries. The 
underlying economic rationale is not clear, but 

central bank intervention may play a role in 

volatility asymmetry. This explanation left to 
future investigation 

𝑟𝑣𝑡
𝐷 = 𝜔 +  𝛽𝑘𝑄

𝑘=𝐷 ln 𝑟𝑣𝑡−1
𝑘  +  𝛼𝑘  𝑟𝑡−1

𝑘  +

𝛾𝐷𝑟𝑡−1
𝐷 + 𝜉𝑡   

The asterisks *, ** and *** represent statistical 
significance at 10%, 5% and 1% respectively. 

Q(20) are Ljung-Box statistics for testing 

autocorrelation in returns for the first 20 lags. 

The 5% critical value of 
2
(20) distribution is 

31.41.The standard errors are the Newey-West 
HAC robust estimates and are in parentheses. 

Table5. HAR-logRV-R models with long term absolute returns 

 CHF/EUR EUR/GBP EUR/JPY 

ω -3.6190***(0.7406) -4.6876***(0.7296) -5.8509***(0.6789) 

β
D 

0.05636**(0.0270) 0.0044(0.0249) 0.0542**(0.0251) 

β
W 

0.4213***(0.0673) 0.3434***(0.0853) 0.3627***(0.0842) 

β
M

 0.0074(0.0965) 0.1296(0.1015) 0.0289(0.1053) 

β
Q
 0.2601***(0.0854) 0.1672***(0.0607) 0.0889(0.0596) 

α
D 

51.5942***(15.3305) 52.1073***( 9.8803) 23.3419***(6.9452) 

α
W

 -966.8313(738.3341) 29.8172( 27.7169) 58.7586***(13.7871) 

α
M

 212.7449**(97.2874) 100.2011(69.7569) 94.8546**(40.4486) 

α
Q
 1022.1706(729.2369) -4.8377(109.5706) 170.5151***(62.3639) 

γ
D 

14.5924(11.0849) 15.9701**(6.4334) -12.8212*** (4.1190) 

corr(rt,ξt) 0.1365 0.1003 -0.0297 

adj. R
2 

0.3460 0.2601 0.3495 

Q(20) 0.5165 0.5764 0.5709 
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rvt
D = ω +  β

kQ
k=D ln rvt−1

k  +  αk rt−1
k  + γkrt−1

k +

ξ
t
.  

The asterisks *, ** and *** represent statistical 
significance at 10%, 5% and 1% respectively. 

Q(20) are Ljung-Box statistics for testing 

 Auto correlation in returns for the first 20 lags. 

The 5% critical value of 2(20) distribution is 
31.41.The standard errors are the Newey-West 
HAC robust estimates and are in parentheses. 

The p-value is for the hypotheses test H0: 

 γkQ
k=D = 0. 

Table6. HAR-logRV-R models with long term returns and absolute returns 

 CHF/EUR EUR/GBP EUR/JPY 

ω -3.9503***(1.0593) -1.2694(1.1564 -4.6285***(0.8533) 

β
D 

0.0526**(0.0268) -0.0112(0.0242) 0.0451*(0.0248) 

β
W 

0.3908***(0.0677) 0.2921***(0.0850) 0.3314***(0.0852) 

β
M

 -0.0403(0.1018) 0.1101(0.0978) 0.0296(0.1052) 

β
Q
 0.3133***(0.1147) 0.5415***(0.1217) 0.2320***(0.0827) 

α
D 

46.4514***(15.4742) 55.7505***(10.2046) 19.8228***(7.0645) 

α
W

 -1038.9954(736.5642) 36.1346(27.1340) 42.1249***(15.1352) 

α
M

 176.0081*(98.0107) 165.2907**(69.2054) 67.0330(42.0483) 

α
Q
 914.4649(722.3355) 71.6174(117.6591) 232.7113***(86.0177) 

γ
D 

15.9106(10.9901) 15.8692**(6.4627) -12.9815***(4.1823) 

γ
W

 -0.1308( 30.7097) -1.0982(3.3992) -3.8817*( 2.3206) 

γ
M

 7.2983**(3.0644) -0.4563(2.0524) -2.0508(1.4173) 

γ
Q
 67.6645(92.0984) 213.3612***(59.6801) -31.7207*(16.6049) 

corr(rt,ξt) 0.1387 0.0996 -0.0268 

adj. R
2 

0.3480 0.2659 0.3540 

Q(20) 0.5131 0.5842 0.5829 

p-value 0.3228 0.0009 0.0024 

Table7. Jump Components in realized volatility 𝐽𝑡
𝐷 = 𝐼 𝑍𝑡 < 𝑧𝑎  𝑟𝑣𝑡

𝐷 − 𝑏𝑣𝑡
𝐷  

 CHF/EUR EUR/GBP EUR/JPY 

Proportion of days with jumps 0.0168 0.0168 0.0749 

Number of Days with jumps 26 28 116 

No-zero jumps    

 Min. -0.0001 -0.00007 -0.0006 

 Median -0.000002 -0.000004 -0.00001 

 Max. -0.000001 -0.000001 -0.000002 

Mean -0.00001 -0.00001 -0.00003 

 S.D. 0.00003 0.00002 0.00006 

    

ln(Ct
D ) = ω +  βkQ

k=D ln Ct−1
k  + αD rt−1

D  +

γD rt−1
D + ξt.  

The asterisks *, ** and *** represent statistical 

significance at 10%, 5% and 1% respectively. 

Q(20) are Ljung-Box statistics for testing 

autocorrelation in returns for the first 20 lags. 

The 5% critical value of 2(20) distribution is 

31.41.The standard errors are the Newey-West 

HAC robust estimates and are in parentheses. 

Table8. HAR-logRV-R models with continuous component 

 CHF/EUR EUR/GBP EUR/JPY 

ω -4.1186***(0.8131) -7.8940***(0.8040) -8.2583***(0.6067) 

β
D 

0.2172***(0.0492) 0.0862**(0.0399) 0.1338***(0.0313) 

β
W 

0.3191***(0.0507) 0.1765***(0.0425) 0.1461***(0.0342) 

β
M

 0.0619(0.0385) 0.0483(0.0349) -0.0028(0.0286) 

β
Q
 0.1028**(0.0437) 0.0734**(0.0397) 0.0471(0.0309) 

α
D 

63.0414***(20.5684) 57.2378***(11.9938) 22.8768***(8.2023) 

γ
D 

20.9722*(11.8734) 20.1526***(7.7715) -14.7031***(4.7074) 

corr(rt,ξt) 0.1340 0.1045 -0.0412 

adj. R
2 

0.2664 0.2138 0.3238 

Q(20) 0.4987 0.6058 0.6442 
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